Robust kernel estimator for densities of unknown smoothness
نویسندگان
چکیده
منابع مشابه
Robust nonparametric kernel regression estimator
In robust nonparametric kernel regression context,weprescribemethod to select trimming parameter and bandwidth. Through solving estimating equations, we control outlier effect through combining weighting and trimming. We show asymptotic consistency, establish bias, variance properties and derive asymptotics. © 2016 Elsevier B.V. All rights reserved.
متن کاملBest Asymptotic Normality of the Kernel Density Entropy Estimator for Smooth Densities
In the random sampling setting we estimate the entropy of a probability density distribution by the entropy of a kernel density estimator using the double exponential kernel. Under mild smoothness and moment conditions we show that the entropy of the kernel density estimator equals a sum of independent and identically distributed (i.i.d.) random variables plus a perturbation which is asymptotic...
متن کاملImprovement of the WENO Scheme Smoothness Estimator
This paper has analyzed the weights of the 5th order WENO (weighted essentially non-oscillatory) scheme suggested by Jiang and Shu and a modified smoothness estimator is suggested to improve the accuracy. Several numerical tests are presented to demonstrate the accuracy and robustness of the new scheme.
متن کاملA Berry-Esseen Type Bound for the Kernel Density Estimator of Length-Biased Data
Length-biased data are widely seen in applications. They are mostly applicable in epidemiological studies or survival analysis in medical researches. Here we aim to propose a Berry-Esseen type bound for the kernel density estimator of this kind of data.The rate of normal convergence in the proposed Berry-Esseen type theorem is shown to be O(n^(-1/6) ) modulo logarithmic term as n tends to infin...
متن کاملAdapting to Unknown Smoothness via Wavelet Shrinkage
We attempt to recover a function of unknown smoothness from noisy, sampled data. We introduce a procedure, SureShrink, which suppresses noise by thresholding the empirical wavelet coe cients. The thresholding is adaptive: a threshold level is assigned to each dyadic resolution level by the principle of minimizing the Stein Unbiased Estimate of Risk (Sure) for threshold estimates. The computatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonparametric Statistics
سال: 2007
ISSN: 1048-5252,1029-0311
DOI: 10.1080/10485250701434007